

Welcome to JSONRPClib-pelix

This library implements the JSON-RPC 2.0 proposed specification in pure Python.
It is designed to be as compatible with the syntax of xmlrpclib as possible
(it extends where possible), so that projects using xmlrpclib could easily
be modified to use JSON and experiment with the differences.

It is backwards-compatible with the 1.0 specification, and supports all of the
new proposed features of 2.0, including:

	Batch submission (via the MultiCall class)

	Keyword arguments

	Notifications (both in a batch and normal)

	Class translation using the __jsonclass__ key.

A SimpleJSONRPCServer class has been added. It is intended to emulate the
SimpleXMLRPCServer from the default Python distribution.

This library is licensed under the terms of the
Apache Software License 2.0 [http://www.apache.org/licenses/LICENSE-2.0.html].

	Installation
	Requirements

	Installation

	Tests

	JSON-RPC Client usage
	Unix Socket

	Additional headers

	Simple JSON-RPC Server
	A note on logging

	Notification Thread Pool

	Threaded server

	Unix Socket

	Class Translation

	Release Notes

	License

Why JSON-RPC?

In my opinion, there are several reasons to choose JSON over XML for RPC:

	Much simpler to read (I suppose this is opinion, but I know I’m right. :)

	Size / Bandwidth - Main reason, a JSON object representation is just much smaller.

	Parsing - JSON should be much quicker to parse than XML.

	Easy class passing with jsonclass (when enabled)

In the interest of being fair, there are also a few reasons to choose XML
over JSON:

	Your server doesn’t do JSON (rather obvious)

	Wider XML-RPC support across APIs (can we change this? :))

	Libraries are more established, i.e. more stable (Let’s change this too.)

About this version

This is a patched version of the original jsonrpclib project by
Josh Marshall, available at https://github.com/joshmarshall/jsonrpclib.

The suffix -pelix only indicates that this version works with Pelix Remote
Services, but it is not a Pelix specific implementation.

	This version adds support for Python 3, staying compatible with Python 2.7.

	It is now possible to use the dispatch_method argument while extending
the SimpleJSONRPCDispatcher, to use a custom dispatcher.
This allows to use this package by Pelix Remote Services.

	It can use thread pools to control the number of threads spawned to handle
notification requests and clients connections.

	The modifications added in other forks of this project have been added:

	From https://github.com/drdaeman/jsonrpclib:

	Improved JSON-RPC 1.0 support

	Less strict error response handling

	From https://github.com/tuomassalo/jsonrpclib:

	In case of a non-pre-defined error, raise an AppError and give access to
error.data

	From https://github.com/dejw/jsonrpclib:

	Custom headers can be sent with request and associated tests

	Since version 0.4, this package added back the support of Unix sockets.

	This version cannot be installed with the original jsonrpclib, as it uses
the same package name.

Installation

Requirements

It supports cjson and simplejson, and looks for the parsers in that
order (searching first for cjson, then for the built-in json in 2.7+,
and then the simplejson external library).
One of these must be installed to use this library, although if you have a
standard distribution of 2.7+, you should already have one.
Keep in mind that cjson is supposed to be the quickest, I believe, so if
you are going for full-on optimization you may want to pick it up.

Installation

You can install the latest stable version from PyPI with the following command:

Global installation
pip install jsonrpclib-pelix

Local installation
pip install --user jsonrpclib-pelix

Alternatively, you can install the latest development version:

pip install git+https://github.com/tcalmant/jsonrpclib.git

Finally, you can download the source from the GitHub repository
at http://github.com/tcalmant/jsonrpclib and manually install it
with the following commands:

git clone git://github.com/tcalmant/jsonrpclib.git
cd jsonrpclib
python setup.py install

Tests

Tests are an almost-verbatim drop from the JSON-RPC specification 2.0 page.
They can be run using unittest or nosetest:

python -m unittest discover tests
python3 -m unittest discover tests
nosetests tests

JSON-RPC Client usage

This is (obviously) taken from a console session.

>>> import jsonrpclib
>>> server = jsonrpclib.ServerProxy('http://localhost:8080')
>>> server.add(5,6)
11
>>> server.add(x=5, y=10)
15
>>> server._notify.add(5,6)
No result returned...
>>> batch = jsonrpclib.MultiCall(server)
>>> batch.add(5, 6)
>>> batch.ping({'key':'value'})
>>> batch._notify.add(4, 30)
>>> results = batch()
>>> for result in results:
>>> ... print(result)
11
{'key': 'value'}
Note that there are only two responses -- this is according to spec.

Clean up
>>> server('close')()

Using client history
>>> history = jsonrpclib.history.History()
>>> server = jsonrpclib.ServerProxy('http://localhost:8080', history=history)
>>> server.add(5,6)
11
>>> print(history.request)
{"id": "f682b956-c8e1-4506-9db4-29fe8bc9fcaa", "jsonrpc": "2.0",
 "method": "add", "params": [5, 6]}
>>> print(history.response)
{"id": "f682b956-c8e1-4506-9db4-29fe8bc9fcaa", "jsonrpc": "2.0",
 "result": 11}

Clean up
>>> server('close')()

If you need 1.0 functionality, there are a bunch of places you can pass that in,
although the best is just to give a specific configuration to
jsonrpclib.ServerProxy:

>>> import jsonrpclib
>>> jsonrpclib.config.DEFAULT.version
2.0
>>> config = jsonrpclib.config.Config(version=1.0)
>>> history = jsonrpclib.history.History()
>>> server = jsonrpclib.ServerProxy('http://localhost:8080', config=config,
 history=history)
>>> server.add(7, 10)
17
>>> print(history.request)
{"id": "827b2923-5b37-49a5-8b36-e73920a16d32",
 "method": "add", "params": [7, 10]}
>>> print(history.response)
{"id": "827b2923-5b37-49a5-8b36-e73920a16d32", "error": null, "result": 17}
>>> server('close')()

The equivalent loads and dumps functions also exist, although with minor
modifications. The dumps arguments are almost identical, but it adds three
arguments: rpcid for the ‘id’ key, version to specify the JSON-RPC
compatibility, and notify if it’s a request that you want to be a
notification.

Additionally, the loads method does not return the params and method like
xmlrpclib, but instead
a.) parses for errors, raising ProtocolErrors, and
b.) returns the entire structure of the request / response for manual parsing.

Unix Socket

To connect a JSON-RPC server over a Unix socket, you have to use a specific
protocol: unix+http.

When connecting to a Unix socket in the current working directory, you can use
the following syntax: unix+http://my.socket

When you need to give an absolute path you must use the path part of the URL,
the host part will be ignored. For example, you can use this URL to indicate a
Unix socket in /var/lib/daemon.socket:
unix+http://./var/lib/daemon.socket

Note: Currently, only HTTP is supported over a Unix socket.
If you want HTTPS support to be implemented, please create an
issue on GitHub [https://github.com/tcalmant/jsonrpclib/issues].

Additional headers

If your remote service requires custom headers in request, you can pass them
as as a headers keyword argument, when creating the ServerProxy:

>>> import jsonrpclib
>>> server = jsonrpclib.ServerProxy("http://localhost:8080",
 headers={'X-Test' : 'Test'})

You can also put additional request headers only for certain method invocation:

>>> import jsonrpclib
>>> server = jsonrpclib.ServerProxy("http://localhost:8080")
>>> with server._additional_headers({'X-Test' : 'Test'}) as test_server:
... test_server.ping(42)
...
>>> # X-Test header will be no longer sent in requests

Of course _additional_headers contexts can be nested as well.

Simple JSON-RPC Server

This is identical in usage (or should be) to the SimpleXMLRPCServer in the
Python standard library. Some of the differences in features are that it
obviously supports notification, batch calls, class translation (if left on),
etc.
Note: The import line is slightly different from the regular
SimpleXMLRPCServer, since the SimpleJSONRPCServer is provided by the
jsonrpclib library.

from jsonrpclib.SimpleJSONRPCServer import SimpleJSONRPCServer

server = SimpleJSONRPCServer(('localhost', 8080))
server.register_function(pow)
server.register_function(lambda x,y: x+y, 'add')
server.register_function(lambda x: x, 'ping')
server.serve_forever()

To start protect the server with SSL, use the following snippet:

from jsonrpclib.SimpleJSONRPCServer import SimpleJSONRPCServer

Setup the SSL socket
server = SimpleJSONRPCServer(('localhost', 8080), bind_and_activate=False)
server.socket = ssl.wrap_socket(server.socket, certfile='server.pem',
 server_side=True)
server.server_bind()
server.server_activate()

... register functions
Start the server
server.serve_forever()

A note on logging

jsonrpclib-pelix uses the logging module from the standard Python
library to trace warnings and errors, but doesn’t set it up.
As a result, you have to configure the Python logging to print out traces.

The easiest way to do it is to add those lines at the beginning of your code:

import logging
logging.basicConfig()

More information can be found in the
logging documentation page [https://docs.python.org/3/library/logging.html].

Notification Thread Pool

By default, notification calls are handled in the request handling thread.
It is possible to use a thread pool to handle them, by giving it to the server
using the set_notification_pool() method:

from jsonrpclib.SimpleJSONRPCServer import SimpleJSONRPCServer
from jsonrpclib.threadpool import ThreadPool

Setup the thread pool: between 0 and 10 threads
pool = ThreadPool(max_threads=10, min_threads=0)

Don't forget to start it
pool.start()

Setup the server
server = SimpleJSONRPCServer(('localhost', 8080), config)
server.set_notification_pool(pool)

Register methods
server.register_function(pow)
server.register_function(lambda x,y: x+y, 'add')
server.register_function(lambda x: x, 'ping')

try:
 server.serve_forever()
finally:
 # Stop the thread pool (let threads finish their current task)
 pool.stop()
 server.set_notification_pool(None)

Threaded server

It is also possible to use a thread pool to handle clients requests, using the
PooledJSONRPCServer class.
By default, this class uses pool of 0 to 30 threads. A custom pool can be given
with the thread_pool parameter of the class constructor.

The notification pool and the request pool are different: by default, a server
with a request pool doesn’t have a notification pool.

from jsonrpclib.SimpleJSONRPCServer import PooledJSONRPCServer
from jsonrpclib.threadpool import ThreadPool

Setup the notification and request pools
nofif_pool = ThreadPool(max_threads=10, min_threads=0)
request_pool = ThreadPool(max_threads=50, min_threads=10)

Don't forget to start them
nofif_pool.start()
request_pool.start()

Setup the server
server = PooledJSONRPCServer(('localhost', 8080), config,
 thread_pool=request_pool)
server.set_notification_pool(nofif_pool)

Register methods
server.register_function(pow)
server.register_function(lambda x,y: x+y, 'add')
server.register_function(lambda x: x, 'ping')

try:
 server.serve_forever()
finally:
 # Stop the thread pools (let threads finish their current task)
 request_pool.stop()
 nofif_pool.stop()
 server.set_notification_pool(None)

Unix Socket

To start a server listening on a Unix socket, you will have to use the
following snippet:

from jsonrpclib.SimpleJSONRPCServer import SimpleJSONRPCServer
import os
import socket

Set the path to the socket file
socket_name = "/tmp/my_socket.socket"

Ensure that the file doesn't exist yet (or an error will be raised)
if os.path.exists(socket_name):
 os.remove(socket_name)

try:
 # Start the server, indicating the socket family
 # The server will force some flags when in Unix socket mode
 # (no log request, no reuse address, ...)
 srv = SimpleJSONRPCServer(socket_name, address_family=socket.AF_UNIX)

 # ... register methods to the server
 # Run the server
 srv.serve_forever()
except KeyboardInterrupt:
 # Shutdown the server gracefully
 srv.shutdown()
 srv.server_close()
finally:
 # You should clean up after the server stopped
 os.remove(socket_name)

This feature is tested on Linux during Travis-CI builds. It also has
been tested on Windows Subsystem for Linux (WSL) on Windows 10 1809.

This feature is not available on “pure” Windows, as it doesn’t provide
the AF_UNIX address family.

Class Translation

The library supports an “automatic” class translation process, although it
is turned off by default.
This can be devastatingly slow if improperly used, so the following is just a
short list of things to keep in mind when using it.

	Keep It (the object) Simple Stupid. (for exceptions, keep reading)

	Do not require init params (for exceptions, keep reading)

	Getter properties without setters could be dangerous (read: not tested)

If any of the above are issues, use the _serialize method. (see usage below)
The server and client must BOTH have use_jsonclass configuration
item on and they must both have access to the same libraries used by the
objects for this to work.

If you have excessively nested arguments, it would be better to turn off the
translation and manually invoke it on specific objects using
jsonrpclib.jsonclass.dump / jsonrpclib.jsonclass.load (since the default
behavior recursively goes through attributes and lists / dicts / tuples).

	Sample file: test_obj.py

This object is /very/ simple, and the system will look through the
attributes and serialize what it can.
class TestObj(object):
 foo = 'bar'

This object requires __init__ params, so it uses the _serialize method
and returns a tuple of init params and attribute values (the init params
can be a dict or a list, but the attribute values must be a dict.)
class TestSerial(object):
 foo = 'bar'
 def __init__(self, *args):
 self.args = args
 def _serialize(self):
 return (self.args, {'foo':self.foo,})

	Sample usage:

>>> import jsonrpclib
>>> import test_obj

History is used only to print the serialized form of beans
>>> history = jsonrpclib.history.History()
>>> testobj1 = test_obj.TestObj()
>>> testobj2 = test_obj.TestSerial()
>>> server = jsonrpclib.Server('http://localhost:8080', history=history)

The 'ping' just returns whatever is sent
>>> ping1 = server.ping(testobj1)
>>> ping2 = server.ping(testobj2)

>>> print(history.request)
{"id": "7805f1f9-9abd-49c6-81dc-dbd47229fe13", "jsonrpc": "2.0",
 "method": "ping", "params": [{"__jsonclass__":
 ["test_obj.TestSerial", []], "foo": "bar"}
]}
>>> print(history.response)
{"id": "7805f1f9-9abd-49c6-81dc-dbd47229fe13", "jsonrpc": "2.0",
 "result": {"__jsonclass__": ["test_obj.TestSerial", []], "foo": "bar"}}

This behavior is turned on by default.
To deactivate it, just set the use_jsonclass member of a server Config
to False.
If you want to use a per-class serialization method, set its name in the
serialize_method member of a server Config.
Finally, if you are using classes that you have defined in the implementation
(as in, not a separate library), you’ll need to add those
(on BOTH the server and the client) using the config.classes.add()
method.

Feedback on this “feature” is very, VERY much appreciated.

Release Notes

0.4.3.2

	Release Date

	2022-02-19

	Reordered PooledJSONRPCServer inheritance definition
(#55 <https://github.com/tcalmant/jsonrpclib/issues/55>)

	Migration of Continuous Integration:
* Use PyTest instead of Nose
* Run CI with GitHub Actions instead of Travis-CI

0.4.3.2

	Release Date

	2021-09-28

	Removed remaining print statements
(#52 [https://github.com/tcalmant/jsonrpclib/issues/52])

0.4.3

	Release Date

	2021-09-26

	ServerProxy keeps the given query string, as before 0.4.2.
This release fixes #51 [https://github.com/tcalmant/jsonrpclib/issues/51],
and a unit test has been added to ensure there won’t be any regression again on this feature

	JSON library selection is now made in the jsonrpclib.jsonlib module,
using a set of handler classes. This will ease the addition of new libraries.

	Added support for ujson

	Fixed Travis-CI builds (migrated from .org to .com and bypassed the coveralls issue with ppc64le)

	Fixed an issue with the CGI test in Python 3-only environments

0.4.2

	Release Date

	2020-11-09

	Use urlparse from urllib.parse (Python 3) or urlparse (Python 2)
to prepare for the deprecation of urllib.parse.splittype.
Thanks to @citrus-it [https://github.com/citrus-it] and
@markmcclain [https://github.com/markmcclain] for this fix.
(see #44 [https://github.com/tcalmant/jsonrpclib/pull/44] and
#45 [https://github.com/tcalmant/jsonrpclib/pull/45] for more details)

	Unix socket clients now send localhost as Host: HTTP field instead of
the path to the socket
(see #47 [https://github.com/tcalmant/jsonrpclib/pull/47]).
Thanks @markmcclain [https://github.com/markmcclain] for this fix.

	Added a TransportError exception, subclass of ProtocolError, which
provides more details
(see #49 [https://github.com/tcalmant/jsonrpclib/pull/49]).
Thanks @markmcclain [https://github.com/markmcclain] for this improvement.

	Added PowerPC 64 architecture (ppc64le) to Travis CI runs, to ease the
integration of new release into RHEL/Ubuntu (see
#50 [https://github.com/tcalmant/jsonrpclib/pull/50] by
@kishorkunal-raj [https://github.com/kishorkunal-raj])

0.4.1

	Release Date

	2020-04-12

	Fixed a size computation issue in the request handler (see #42)

0.4.0

	Release Date

	2019-01-13

	Added back support of Unix sockets on both server and client side.
Note: HTTPS is not supported on server-side Unix sockets

	Fixed the CGI request handler

	Fixed the request handler wrapping on server side

	Documentation is now hosted on ReadTheDocs:
https://jsonrpclib-pelix.readthedocs.io/

0.3.2

	Release Date

	2018-10-26

	Fixed a memory leak in the Thread Pool, causing the PooledJSONRPCServer
to crash after some uptime
(see #35 [https://github.com/tcalmant/jsonrpclib/pull/35]).
Thanks @animalmutch [https://github.com/animalmutch] for reporting it.

0.3.1

	Release Date

	2017-06-27

	Hide dunder methods from remote calls
(thanks to @MarcSchmitzer [https://github.com/MarcSchmitzer]).
This avoids weird behaviours with special/meta methods
(__len__, __add__, …).
See (#32 [https://github.com/tcalmant/jsonrpclib/pull/32]) for reference.

0.3.0

	Release Date

	2017-04-27

	Handle the potentially incomplete xmlrpc.server package when the future
package is used
(thanks to @MarcSchmitzer [https://github.com/MarcSchmitzer])

0.2.9

	Release Date

	2016-12-12

	Added support for enumerations (enum.Enum classes, added in Python 3.4)

	Removed tests for pypy3 as it doesn’t work with pip anymore

0.2.8

	Release Date

	2016-08-23

	Clients can now connect servers using basic authentication.
The server URL must be given using this format: http://user:password@server

	The thread pool has been updated to reflect the fixes contributed by
@Paltoquet [https://github.com/Paltoquet] for the
iPOPO [https://github.com/tcalmant/ipopo] project.

0.2.7

	Release Date

	2016-06-12

	Application of the TransportMixin fix developped by
@MarcSchmitzer [https://github.com/MarcSchmitzer]
(#26 [https://github.com/tcalmant/jsonrpclib/pull/26]).

0.2.6

	Release Date

	2015-08-24

	Removed support for Python 2.6

	Added a __repr__ method to the _Method class

	Project is now tested against Python 3.4 and Pypy 3 on Travis-CI

0.2.5

	Release Date

	2015-02-28

	Corrects the PooledJSONRPCServer

	Stops the thread pool of the PooledJSONRPCServer in server_close()

	Corrects the Config.copy() method: it now uses a copy of local classes
and serialization handlers instead of sharing those dictionaries.

0.2.4

	Release Date

	2015-02-16

	Added a thread pool to handle requests

	Corrects the handling of reused request sockets on the server side

	Corrects the additional_header feature: now supports different headers
for different proxies, from
@MarcSchmitzer [https://github.com/MarcSchmitzer]

	Adds a data field to error responses, from
@MarcSchmitzer [https://github.com/MarcSchmitzer] and
@mbra [https://github.com/mbra]

0.2.3

	Release Date

	2015-01-16

	Added support for a custom SSLContext on client side

0.2.2

	Release Date

	2014-12-23

	Fixed support for IronPython

	Fixed Python 2.6 compatibility in tests

	Added logs on server side

0.2.1

	Release Date

	2014-09-18

	Return None instead of an empty list on empty replies

	Better lookup of the custom serializer to look for

0.2.0

	Release Date

	2014-08-28

	Code review

	Fixed propagation of configuration through jsonclass, from
dawryn [https://github.com/dawryn]

0.1.9

	Release Date

	2014-06-09

	Fixed compatibility with JSON-RPC 1.0

	Propagate configuration through jsonclass, from
dawryn [https://github.com/dawryn]

0.1.8

	Release Date

	2014-06-05

	Enhanced support for bean inheritance

0.1.7

	Release Date

	2014-06-02

	Enhanced support of custom objects (with __slots__ and handlers), from
dawryn [https://github.com/dawryn]
See Pull requests
#5 [https://github.com/tcalmant/jsonrpclib/pull/5],
#6 [https://github.com/tcalmant/jsonrpclib/pull/6],
#7 [https://github.com/tcalmant/jsonrpclib/pull/7])

	Added tests

	First upload as a Wheel file

0.1.6.1

	Release Date

	2013-10-25

	Fixed loading of recursive bean fields (beans can contain other beans)

	ServerProxy can now be closed using: client("close")()

0.1.6

	Release Date

	2013-10-14

	Fixed bean marshalling

	Added support for set and frozenset values

	Changed configuration singleton to Config instances

0.1.5

	Release Date

	2013-06-20

	Requests with ID 0 are not considered notifications anymore

	Fixed memory leak due to keeping history in ServerProxy

	Content-Type can be configured

	Better feeding of the JSON parser (avoid missing parts of a multi-bytes
character)

	Code formatting/compatibility enhancements

	Applied enhancements found on other forks:

	Less strict error response handling from
drdaeman [https://github.com/drdaeman/jsonrpclib]

	In case of a non-predefined error, raise an AppError and give access
to error.data, from
tuomassalo [https://github.com/tuomassalo/jsonrpclib]

0.1.4

	Release Date

	2013-05-22

	First published version of this fork, with support for Python 3

	Version number was following the original project one

License

iPOPO is licensed under the terms of the
Apache Software License 2.0 [http://www.apache.org/licenses/LICENSE-2.0].
All contributions must comply with this license.

File Header

This snippet is added to the module-level documentation:

Copyright 2022 Thomas Calmant

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

License Full Text

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright [yyyy] [name of copyright owner]

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

Index

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to JSONRPClib-pelix

 		
 Installation

 		
 Requirements

 		
 Installation

 		
 Tests

 		
 JSON-RPC Client usage

 		
 Unix Socket

 		
 Additional headers

 		
 Simple JSON-RPC Server

 		
 A note on logging

 		
 Notification Thread Pool

 		
 Threaded server

 		
 Unix Socket

 		
 Class Translation

 		
 Release Notes

 		
 0.4.3.2

 		
 0.4.3.2

 		
 0.4.3

 		
 0.4.2

 		
 0.4.1

 		
 0.4.0

 		
 0.3.2

 		
 0.3.1

 		
 0.3.0

 		
 0.2.9

 		
 0.2.8

 		
 0.2.7

 		
 0.2.6

 		
 0.2.5

 		
 0.2.4

 		
 0.2.3

 		
 0.2.2

 		
 0.2.1

 		
 0.2.0

 		
 0.1.9

 		
 0.1.8

 		
 0.1.7

 		
 0.1.6.1

 		
 0.1.6

 		
 0.1.5

 		
 0.1.4

 		
 License

 		
 File Header

 		
 License Full Text

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

